

of KPC labs

QUALITY CONTROL SERVICES

Our Vision

The premier oil and gas laboratory testing services provider.

Our Mission

Driving business through quality assurance of oil and gas to our customers

Our Motto

Quality Service always

Locations (Sites)

Testing services are offered in our various laboratories geographically located as below:

- PS01 -Changamwe, Mombasa
- PS14 -KOSF, Mombasa
- PS15 -KPRL, Mombasa
- PS10 -Industrial Area, Nairobi
- · PS25-Lanet, Nakuru
- · PS27-Eldoret
- PS28-Kisumu

Certifications & Standards

Accreditation to ISO/IEC 17025:2017 for General requirements for the competence of testing and calibration laboratories.

Environmental laboratory designation by NEMA to undertake drinking water, effluent water and Soil analysis.

Our Services

Petroleum testing

Environmental testing

MSP/MOGAS/GASOLINE/PETROL

Analysis	Test Method	Charges (Ksh)
Appearance	ASTMD 4176	600
Colour	Organoleptic	400
Oduor	Visual	600
Copper Corrosion	ASTMD 130	2,100
Density @20C	ASTMD 4052	1,350
Density @15C	ASTMD 4052	1350
Distillation	ASTMD 86	3,000
Doctor Test	ASTMD 4952/IP 30	800
FVI		4,900***(Calculation)
Mercaptan Sulphur	ASTMD 3227	3,000
Gum, Existent	ASTMD 381	4,000
Induction Period	ASTMD 525	4,730
Lead Content	ASTMD 3237/IP 352	2 2,000
RON	ASTMD 2699	9,900
MON	ASTMD 2700	20,000
Reid Vapor Pressure	ASTMD 323	2,500
Oxygenates	ASTMD 6839	26,000
Sulphur	ASTMD 4045	5,000

JET A-1

Analysis	Test Method	Charges (Ksh)
Appearance	ASTMD 4176	600
Colour Saybolt	ASTMD 156	1,200
Oduor	BS 4250	400
Particulate Contamination	ASTMD 5452	4,000
Total Acidity	ASTMD 3232	1,500
Aromatics % vol	ASTMD 1319	4,500
Sulphur % m/m	ASTMD 4294	2,000
Doctor Test	IP 30	1,000
Mercaptan Sulphur	ASTMD 3227	3,000
Distillation	ASTMD 86	3,000
Flash Point Abel	IP170	2,100
Density @ 20c	ASTMD 4052	1,350
Density @15c	ASTMD 4052	1,350
Freezing Point	ASTMD 2386	2,000
Viscosity @ -20c	ASTMD 445	10,000
Specific Energy , net MJ/KG	ASTMD 3338	9,700 (***Calculation)
Smoke Point	ASTMD 1322	1,500
Copper Corrosion	ASTMD 130	2,100
JFTOT	ASTMD 3241	16,000
Existent Gum	ASTMD 381	4,000
MSEP	ASTMD 3948	8,000
MSEP	ASTMD 7224	8,000
Electrical Conductivity	ASTMD 2624	3,000
Water Reaction	ASTMD 1094	900
Particle Count	IP 565	3,000
Char Value	IP 10	2,000
Millipore Membrane Analysis	ASTMD 5452	7.000

For details on testing cost please visit : w w w . k p c /. c o . k e / l a b

7797/IP **5**83 10,000

FAME

ILUMINATING KEROSENE

Analysis	Test Method	Charges (Ksh)
Colour (Saybolt)	ASTMD 156	600
Conductivity	ASTMD 2624	3,000
Smoke Point	ASTMD 1322	1,500
Sulphur Total	ASTMD 4294	2,000
Copper Corrosion	ASTMD 130	1,500
Distillation	ASTMD 86	3,000
Flash Point	IP 170	2,100
Density	ASTMD 4052	1,350
Specific Gravity @ 60/60 F	ASTMD 1298	800
Appearance	ASTMD 4176	600
Oduor	BS 4250	500
Char Value	IP 10	2,000

LPG

Analysis	Test Method	Charges (Ksh)
RVP	ASTMD 1267	5,000
Copper Corrosion	ASTMD 130	3,000
Oduor CH ₂	BS 4250	2,000
95%Boiling Point 1,2	ASTMD 1837	4,000
Free Water 100 (CH2) 2 AU HO (CH2) 2 Receive A DS Receive	Visual	1,500
Ce Aydrogen Sulphides	ASTMD 2420	2,000
GC Hydrocarbon Composition %	Vol ASTMD 2163	21,000
Density @ 20deg.C	IP 235	3,000
LPG Sampling	ASTM -100	4,000
	75 50	
For details o	n testing cost please vis	it:
www.	kpc.co.ke/lab	

LUBRICATING OIL

Analysis	Test Method	Charges (Ksh)
Appearance	ASTMD 4176	600
Ash	ASTMD 482	1,500
Viscosity @100C	ASTMD 445	1,800
Viscosity @ 40C	ASTMD 445	1,800
Viscosity Index	ASTMD 445	4,000
Pour Point	ASTMD 97	1,600
Colour	ASTMD 1500	800
Copper Corrosion	ASTMD 130	1,500
Sulphated Ash	ASTMD 874	2,000
Flash Point	ASTMD 93	2,100
Sediment	ASTMD 473	1,800
Sulphur	ASTMD 4294	2,000
Water	ASTMD 95	1,200
Water Karl Fischer	ASTMD 6304	1,200
Density @ 20C	ASTMD 4052	1,350
Total Acid Number	ASTMD 974	2,100
Crackle Test		1,000
Carbon Residue	ASTMD 189	1,800

HEAVY FUEL OIL

	1	
Analysis	Test Method	Charges (Ksh)
Ash content % m/m	ASTMD482	1,500
Asphaltenes % m/m	IP 143	3,000
Compatibility Test	ASTMD4740	1,000
Kinematic Viscosity @50c	ASTMD 445	1,800
Pour Point	ASTMD 97	1,600
Conradson Carbon Residue	ASTMD 189	1,800
Calorific Value Gross	ASTMD 4868	5,700***(Calculation)
Calorific Value Nett	ASTMD 4868	6,200***(Calculation)
Density @20c	ASTMD 4052	800
Density @15c	ASTMD 4052	500(Calculation)
Sulphur content %m/m	ASTMD 4294	2000
Strong Acid Number	ASTMD 974	1,400
Total Acid Number	ASTMD 974	1,400
Flash Point pmcc	ASTMD 93	1,400
Water content % vol	ASTMD 95	1,200
Sediment by extraction %m/m	ASTMD 473	1,750
Sodium content ppm	IP464	3,000
Vanadium content ppm	IP 464	3,000
Aluminium content ppm	IP 464	3,000
Silica content ppm	IP464	3,000
Spot Test cleanliness	•	1,000
Spot Test Compatibility	ĭ	1,000

For details on testing cost please visit:

www.kpc.co.ke/lab

BITUMEN

	1 1	
Analysis	Test Method	Charges (Ks
Specific Gravity	ASTMD 70	800
Softening Point	ASTMD 36	2,800
Ductility	ASTMD 113	2,200
Penetration	ASTMD 1221	2,500
Loss on Heating	IP 45	2,000
Penetration after LOH	ASTMD 1321	2,500
Flash point COC	ASTMD 92	2,000
Solubility in Trichloroethylene	ASTMD 2042	1,500
Crackle Test		1,500

EFFLUENT WATER

Analysis	Test Method	Charges (Ksh)
Colour (Hazen)	APHA 2120B	8,500
Oil and Grease	ASTM D 4281	8,500
Total Dissolved Solids (TDS)	ASTM D5907	8,500
PH	ASTM D 1293	6,500
Temperature		600
BOD5 @ 20 degrees	ASTM D888-09	6,500
Elemental Analysis	APHA 3111	8,750**
phenol	ASTM D 1783-01	8,500
sulphides	APHA-4500F	8,500
Ecoli and coliforms	KS 05 459	8,500
Total coliforms	K6 05 459	8,500
Total Chromiums	ASTM D1687	8,500
Total Petroleum Hydrocarbon(TPH)	AS FM D7678	6,500

JET A-1

Analysis	Test Method	Charges (Ksh)
Appearance	ASTMD 4176	600
Colour Saybolt	ASTMD 156	1,200
Oduor	BS 4250	400
Particulate Contamination	ASTMD 5452	4,000
Total Acidity	ASTMD 3232	1,500
Aromatics % vol	ASTMD 1319	4,500
Sulphur % m/m	ASTMD 4294	2,000
Doctor Test	IP 30	1,000
Mercaptan Sulphur	ASTMD 3227	3,000
Distillation	ASTMD 86	3,000
Flash Point Abel	IP170	2,100
Density @ 20c	ASTMD 4052	1,350
Density @15c	ASTMD 4052	1,350
Freezing Point	ASTMD 2386	2,000
Viscosity @ -20c	ASTMD 445	10,000
Specific Energy , net MJ/KG	ASTMD 3338	9,700 (***Calculation)
Smoke Point	ASTMD 1322	1,500
Copper Corrosion	ASTMD 130	2,100
JFTOT	ASTMD 3241	16,000
Existent Gum	ASTMD 381	4,000
MSEP	ASTMD 3948	8,000
MSEP	ASTMD 7224	8,000
Electrical Conductivity	ASTMD 2624	3,000
Water Reaction	ASTMD 1094	900
Particle Count	IP 565	3,000
Char Value	IP 10	2,000
Millipore Membrane Analysis	ASTMD 5452	7,000

For details on testing cost please visit: w w w . k p c /. c o . k e / l a b

MD 7797/IP 583 10,000

FAME

AUTOMOTIVE GASOIL/DIESEL

Analysis	Test Method	Charges (Ksh)
Appearnce	ASTMD 4176	600
Ash	ASTMD 482	1,500
Cetane Index	ASTMD 976	3,200***(Calculation)
CFPP	IP 309	1,925
Colour	ASTMD 1500	1,350
Copper Corrosion	ASTMD 130	2,100
Density @15C	ASTMD 4052	1,350
Density @20C	ASTMD 4052	1,350
Distillation	ASTMD 86	3,000
Flash Point	ASTMD 93	2.100
Kinematic Viscosity	ASTMD 445	1,800
Acid Number	ASTMD 974	2,100
Strong Acid Number	ASTMD 974	2.100
Carbon Residue, 10% bottom	ASTMD 189	2,000
Sediment	ASTMD 473	1,800
Sulphur	ASTMD 4294	2,000
Water content	ASTMD 95	1,200
Classed Ballet	ACTMD DEOD	1,000

CRUDE OIL

Analysis	Test Method	Charges (Ksh)
Appearance	ASTMD 4167	400
Sediments %m/m	ASTMD 473	, 1 <i>7</i> 50
Density @20 DegC	ASTMD 4052	800
Water Content %Vol	ASTMD 95	1,200
Sulphur %m/m	ASTMD 4294	2,000
API		1,200
Salts Content	IP 265	2,000

SOIL

Analysis	lest Method	Charges (Ksh)
Total Petroleum Hydrocarbon(TPH)	ASTM D7678	7,000
PH	ASTM D 1293	6,500
Elemental analysis	APHA 31118	8,750**

For details on testing cost please visit:

Africa's Premier Oil and Gas Company
www.kpc.co.ke/lab

INDUSTRIAL DIESEL OIL (IDO)

Analysis	Test Method	Charges (Ksh)
Density @20c	ASTMD 4052	800
Density @15c	ASTMD 4052	500
Distillation	ASTMD 86	1,900
Flash Point pmcc	ASTMD 93	1,400
Strong Acid Number	ASTMD 974	1,400
Total Acid Number	ASTMD 974	1,400
Sulphur content % m/m	ASTMD 4294	2,000
Copper corrosion	ASTMD 130	1,400
Kinematic Viscosity @40C	ASTMD 445	1,800
Water content % vol	ASTMD 95	1,200
Ash content % m/m	ASTMD 482	1,500
CCR on 10% residue	ASTMD 189	2,000
Sediment by extraction %m/m	ASTMD 473	1,800
Asphaltenes %	IP 143	2,000
Calorific Value (Gross)	ASTMD 4868	5,700***(Calculation)
Calorific Value (Net)	ASTMD 4868	6,200***(Calculation)
Each trace metal	IP 464	3,000

For details on testing cost please visit: